Detecting Inference Channels in Private Multimedia Data via Social Networks
نویسندگان
چکیده
Indirect access to protected information has been one of the key challenges facing the international community for the last decade. Providing techniques to control direct access to sensitive information remain insufficient against inference channels established when legitimate data reveal classified facts hidden from unauthorized users. Several techniques have been proposed in the literature to meet indirect access prevention. However, those addressing the inference problem when involving multimedia objects (images, audio, video, etc.) remain few and hold several drawbacks. In essence, the complex structure of multimedia objects makes the fact of detecting indirect access a difficult task. In this paper, we propose a novel approach to detect possible inference channels established between multimedia objects representing persons by combining social network information with unmasked content of multimedia objects. Here, we present the techniques used to map the content of social networks to the set of multimedia objects at hand. We also provide an MiD function able to determine whether an unmasked multimedia object combined with data from the social network infers a sensitive multimedia object.
منابع مشابه
A Survey on Multicast Routing Approaches in Wireless Mesh Networks
Wireless mesh networks (WMNs) which mediates the broadband Internet access, have been recently received many attentions by the researchers. In order to increase capacity in these networks, nodes are equipped with multiple radios tuned on multiple channels emerging multi radio multi-channel WMNs (MRMC WMNs). Therefore, a vital challenge that poses in MRMC WMNs is how to properly assign channels ...
متن کاملPreventing Private Information Inference Attacks on Social Networks Technical Report UTDCS-03-09
On-line social networks, such as Facebook, are increasingly utilized by many people. These networks allow users to publish details about themselves and connect to their friends. Some of the information revealed inside these networks is meant to be private. Yet it is possible that corporations could use learning algorithms on released data to predict undisclosed private information. In this pape...
متن کاملA Combined Model of Clustering and Classification Methods for Preserving Privacy in Social Networks against Inference and Neighborhood Attacks
In the last decade online social networks has gained remarkable attention. Facebook or Google+, are example social network services which allow people to create online profiles and share personal information with their friends. These networks publish details about users while some of the information revealed inside is private. In order to address privacy concerns, many social networks allow use...
متن کاملChapter 15 MULTIMEDIA INFORMATION NETWORKS IN SOCIAL MEDIA
The popularity of personal digital cameras and online photo/video sharing community has lead to an explosion of multimedia information. Unlike traditional multimedia data, many new multimedia datasets are organized in a structural way, incorporating rich information such as semantic ontology, social interaction, community media, geographical maps, in addition to the multimedia contents by thems...
متن کاملChapter 2 MULTIMEDIA INFORMATION NETWORKS IN SOCIAL MEDIA
The popularity of personal digital cameras and online photo/video sharing community has lead to an explosion of multimedia information. Unlike traditional multimedia data, many new multimedia datasets are organized in a structural way, incorporating rich information such as semantic ontology, social interaction, community media, geographical maps, in addition to the multimedia contents by thems...
متن کامل